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Abstract 

 This project analyzes different approaches for multi-criteria route selection for hazardous 

materials (hazmat) transportation on rail. Considering that hazmat transportation planning should 

regard many safety and risk factors, selecting a route for a shipment can be a challenging 

decision making problem. Furthermore, the safety and risk factors should be considered in an 

unbiased objective manner. Three unsupervised approaches are described route selection. A 

solution methodology is presented with these approaches. A set of numerical analyses is used to 

compare different approaches. Based on the results of the numerical analyses, it is discussed that, 

while each approach will output the best route based on a specific value, one of the approaches is 

more robust compared to the other two approaches. These approaches can be used by decision 

makers to select routes without a need for ranking and/or comparing various criteria. 
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Chapter 1 Introduction and Literature Review 

1.1 Hazmat Transportation on Rail and Safety Factors 

 Majority of hazardous materials (hazmat) are transported with rail, especially long 

distance shipments. Indeed, based on the most recent statistics, rail is the second in ton-miles of 

hazmat shipments (3). An important problem of rail carriers of hazmat is planning and routing of 

the hazmat. As noted by Gordon and Young (14), hazmat routing is a challenging problem due to 

cost, safety, and complexity issues. Especially, hazmat incidents can be very dangerous to the 

population as well as the environment. While hazmat shipment by rail has the third most 

incidents, the cost of the damages of hazmat shipment incidents by rail is second compared to 

other methods of transportation (30). Therefore, in addition to cost and time considerations in 

routing hazmat on rail, the carriers need to consider the safety aspects of transporting hazmat.  

In regarding safety for hazmat transportation, accident risks and the potential impact of 

accidents are commonly accounted for routing planning (8, 9, 10). Furthermore, multi-modal 

hazmat routing studies, mostly truck-rail interactions, has focused on transferring the shipment 

from one mode to the other (36, 37, 38). As reviewed in the following subsection, there are many 

risk factors to take into account when planning routes for hazmat transportation on rail. Indeed, 

Code of Federal Regulations (CFR) 49 - Part 172 (Appendix D) lists the following 27 factors to 

include in the safety and risk analyses of hazmat routing planning (1): 

1. Volume of hazardous material transported;  

2. Rail traffic density;  

3. Trip length for route;  

4. Presence and characteristics of railroad facilities;  

5. Track type, class, and maintenance schedule;  
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6. Track grade and curvature;  

7. Presence or absence of signals and train control systems along the route (“dark” versus 

signaled territory);  

8. Presence or absence of wayside hazard detectors;  

9. Number and types of grade crossings;  

10. Single versus double track territory;  

11. Frequency and location of track turnouts;  

12. Proximity to iconic targets;  

13. Environmentally sensitive or significant areas;  

14. Population density along the route;  

15. Venues along the route (stations, events, places of congregation);  

16. Emergency response capability along the route;  

17. Areas of high consequence along the route, including high consequence targets  

18. Presence of passenger traffic along route (shared track);  

19. Speed of train operations;  

20. Proximity to en-route storage or repair facilities;  

21. Known threats, including any non-public threat scenarios provided by the Department 

of Homeland Security or the Department of Transportation for carrier use in the 

development of the route assessment;  

22. Measures in place to address apparent safety and security risks;  

23. Availability of practicable alternative routes;  

24. Past incidents;  

25. Overall times in transit;  



3 

 

26. Training and skill level of crews; and  

27. Impact on rail network traffic and congestion. 

For instance, factor 9 is the number and type of crossings on the route. Indeed, railroad-highway 

crossings are subject to high safety risks and significant number of all rail incidents are highway-

rail incidents (28, 29). The initial focus of this project was to exclusively focus on railroad-

highway crossings in routing planning. However, based on the number of safety and risk factors 

to consider and the literature review presented next, a more generic approach is taken. In 

particular, the models and the analyses in this project focus on making a route selection when 

many factors are to be simultaneously considered. That is, given alternative routes, selecting one 

route considering many different safety risk and safety factors, including number of crossings, is 

the focus in this project.  

In particular, selecting one route, from a set of many alternative routes, is a challenging 

task when many factors should be accounted for. A route might be preferred over another based 

on a specific factor while the other route can be more attractive based on another factor. 

Therefore, considering many safety and risk factors in addition to cost and time criteria, selecting 

one route is difficult. One challenge is the large number of factors. When the number of factors 

(evaluation criteria) is large, most of the alternative routes cannot be easily ruled out. Another 

challenge is how to objectively account for the various factors while assuring an effective 

selection. 

The project analyzes three different approaches to make an effective and objective route 

selection and provides tools to use each approach. Furthermore, these approaches are 

computationally compared. The tools and the findings can be used by rail carriers to make 
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routing plans for hazmat transportation by accounting for many safety and risk factors as well as 

other operational factors such as cost and time considerations.    

1.2 Multi-criteria Hazmat Transportation on Rail and Risk Considerations 

 Here, multi-criteria decision making models for hazmat routing on rail and risk reduction 

models are reviewed. This review of the existing literature fostered the recognition of two 

approach avenues to the risk-considerate selection of hazmat route alternatives. Varying in the 

procedures used to define risk and additional metrics, the methodologies collectively sample the 

industry’s dispersive efforts to model this complex and evolving transportation problem. 

The first approach category is comprised of works seeking to minimize or control the 

level of risk assumed by the network, while also giving deference to the financial ramifications 

of selected strategies. This pairing of risk and economic considerations has emerged as a natural 

point of investigation, stemming from the economically sensitive nature of the entities 

responsible for hazmat shipment.  

Verma formulated a bi-objective optimization model, working to minimize both the cost 

and transportation risk associated with hazmat shipment (40). Hazmat specific expected risk was 

used in assessing transport risk; stemming from a consideration of each route’s estimated 

accident rate, shipment characteristics, and expected population exposure. Fixed-radius exposure 

bands were used in determining population exposure values. Glickman, Erkut, and Zschoke 

conducted a study to demonstrate the impact of risk-averse rerouting on incurred transportation 

costs (13). The work used travel distance as a surrogate for cost and recognized risk as the 

population within a specified radius from the hazardous material during its transport. The paper 

did not explicitly perform an optimization utilizing the two objectives; instead, it postulated that 

risk-informed rerouting may award incremental risk reduction benefits compared to associated 
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increases in cost. The authors did note a bi-objective optimization model (risk, cost) as an 

obvious extension of their efforts and presented their methods in a manner that facilitates the 

development of the proposed dual model. Creation of the model would successfully integrate 

their strategies into a methodology for risk and cost informed route selection.  

Verma, Verter, and Gendreau developed a bi-objective optimization model, considering 

risk and cost objectives, to determine which routes, yards, and train types minimize the objective 

functions while meeting the demands of the analyzed network (39). Cumulative exposure along 

routes and within yards was used as the risk metric, with risk values generated by an application 

of the Gaussian plume model (GPM). Zhao and Verter proposed a similar model, using the GPM 

to develop an environmental risk factor relating to the transport of used oil products (43). This 

metric was employed in a bi-objective model looking to minimize cost and environmental risk in 

determining a route and location schedule for this specific hazmat material.  

Liu, Saat, and Barkan proposed an optimization model, considering two risk reduction 

strategies, in developing an integrated framework to optimize risk reduction (23). Namely, 

broken rail reduction and tank car safety design enhancement efforts were examined via a 

Pareto-optimality technique to maximize risk reduction for a given investment level. Lai et al. 

developed an integrated mathematical model to consider a combination of risk reduction 

approaches (22). Routing, design, and maintenance considerations were included in the model, in 

addition to cost considerations associated with the risk reduction and routing measures. These 

objectives were combined into a single objective function, used to determine the optimal 

combination of risk reduction strategies.  

Verma, Verter, and Zufferey proposed a bi-objective optimization model, explicitly 

considering rail-truck intermodal hazmat transportation (38). The method assessed routing 
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alternatives based on cost and exposure risk expectation, incorporating factors inherent of 

multimodal transportation, including inbound and outbound drayage. Verma and Verter 

formulated a bi-objective model, looking to minimize the risk and cost associated with a 

developed routing schedule, while also meeting the demand due-dates necessitated of the 

shipments (36). The model estimated risk through employment of the GPM to determine the 

population exposure expected in the event of an accidental release along each route alternative.  

Xie, Lu, Wang, and Quadrifoglio looked to optimize the hazmat location and routing 

plans carried out over multiple modes of transport in terms of overall risk and cost (41). In 

addition to optimally siting disposal and treatment facilities, this work also sought to optimally 

place transfer yards. The risk metric used in the optimization was calculated as a combination of 

the probability of accident and the expected population exposure along each of the transfer routes 

and at joining yards. Sun, Lang, and Wang developed a bi-objective model to minimize total 

generalized costs and the social risks associated with the transportation of hazmat on a 

multimodal network (35). The method calculated social risk as the product of population 

exposure and the volume of hazmat being transported; deriving population exposure values from 

the GPM. A normalized weighted sum approach was then used to determine the best performing 

routes.  

Fang, Ke, and Verma developed a mathematical model to minimize the weighted sum of 

earliness and tardiness costs for each demand shipment and the holding cost at each yard (10). 

Dealing with hazmat, the minimization was subject to risk threshold constraints developed from 

historical accident and speed data. Romero, Nozick, and Xu formulated a model to aid in facility 

location and routing decisions of hazmat (31). In addition to more traditional risk and cost 

considerations, the equity of the assumed risk among household income cohorts was integrated 
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into the model. The model was demonstrated on a realistic example, minimizing total canister-

miles (a means of incorporating transportation costs) and transportation accident risk, in addition 

to determining alternatives meeting equity thresholds. 

The second approach category is made up of research focused more explicitly on risk 

reduction, without a direct consideration of incurred costs. These works may be regarded as 

standalone contributions to the body of hazmat transportation risk reduction literature; in 

addition to being candidates for integration with cost considerations in future, commensal works. 

Hosseini and Verma applied a Value-at-Risk (VaR) methodology, originally developed for 

portfolio management, to the routing of hazmat rail (17). Route characteristics and decision-

maker risk preference were incorporated into a bi-level optimization yielding distinct route and 

train configuration recommendations based on determined VaR values. Hosseini and Verma 

expanded upon their work in (17) by addressing VaR’s tendency to ignore the tail-ends of used 

probability distributions (16). This disregard is detrimental to the method’s effectiveness as the 

discounted region is where catastrophic event outcomes reside. A Conditional Value-at-Risk 

(CVaR) approach was developed to address this issue, yielding a problem instance validated 

methodology with demonstrated advantages over its predecessor. 

Kawprasert and Barkan developed a flexible route rationalization model aimed at 

reducing the total risk of transporting hazmat over a rail network (19). The model was applied to 

a case study, finding the most favorable hazmat flow produced by the minimization of car miles, 

release probability, and annual risk. The performance of each objective generated flow was 

compared to a baseline flow in terms of distance, probability, and risk metrics. The proposed 

model is flexible in that it allows for different objective functions to be considered, serving as a 

framework to determine strategies and routes that promote reduced risk.  
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Bersani, Papa, Sacile, Sallak, and Terribile formulated a mixed integer linear program to 

minimize population exposure risk through the rescheduling of hazmat train shipments (2). The 

approach does not modify the paths upon which the material flows, only when the flow occurs. 

The dynamic nature of population dispersion was used to accordingly route hazmat shipments in 

a manner posing the least risk of population exposure. Faghih-Rhoohi, Ong, Asian, and Zhang 

created a dynamic CVaR model for hazmat transportation networks (9). The developed model 

aids in the selection of minimal risk routes while considering time schedules for transported 

material based on the CVaR of accidents in the network. The later consideration broadened the 

scope of the approach, incorporating a temporal factor through the identification of beneficial 

departure and transportation times for shipped material.  

Relating most directly to the contents of this research, Gordon and Young discussed 

industry’s use of the Rail Corridor Risk Assessment System (RCRMS) as a near-standard tool 

for risk assessment in relation to the transport of hazmat shipments (14). Describing RCRMS as 

a useful but resource intensive and informationally sensitive assessment model, the authors 

posed a simplified methodology, grouping the 27 required risk factors into seven groups. 

Through this grouping, the authors sought to provide a less onerous evaluation scheme, enabling 

an easier comparison of candidate routes. 

1.3 Multi-criteria Decision Making 

Multi-criteria decision making problems (multi-objective optimization problems) are 

generally characterized by the existence of Pareto efficient solutions. Koopmans effectively 

defined the Pareto efficient solution set as that composed of non-dominated solutions emerging 

from an objective-wise examination of the solution alternatives (21). To navigate the 

complexities of this characteristic, two approach avenues have been developed. 



9 

 

The first set of approach methodologies, including non-preference and a priori methods, 

conclude with the selection of a single solution to the multi-objective problem. Non-preference 

methods do not utilize expert or decision maker input in selecting the recommended solution 

(18). The method of global criterion, in which the distance to some reference solution is 

minimized, is an example of a non-preference method (42). A priori methods incorporate 

predefined preference information toward the selection of the recommended solution (18). A 

fundamental example is the Weighted Sum Method, which transforms a multi-objective problem 

into a single objective optimization by applying weighted coefficients to each objective function 

(12). Decision maker input is used to assign the weights for each objective function.  

The ε-Constrained Method, another a priori scheme, requires the development of bounds 

for each objective function (15). In addition, a single objective function from the multiple-

objective set is selected as the objective to be optimized. The remaining objectives are applied as 

constraints, obliging the solution to exist between their defined bounds. The weighted min-max 

approach seeks to minimize the maximum weighted potential loss between any of a solution’s 

objective function values and their associated reference values (24). The ideal, or utopia, point is 

a commonly selected candidate for the reference values. Objective/Goal Programming Methods 

require the predetermination of desired values for each objective function (11). These values are 

then incorporated into a single objective function looking to minimize the total difference 

between the desired and actual values. This model is well-suited for solving linear problems but 

experiences difficulty when faced with nonlinear behavior (4). While appropriately developed a 

priori methodologies are beneficial in that they produce a single, Pareto efficient solution, their 

necessity of preassigned decision maker preference can serve problematic. The determination of 

meaningful and feasible expert input may be both cumbersome and difficult to develop, 
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particularly in large or novel problem instances. Furthermore, the nature of the utilized input is 

near inherently subjective. 

The second approach avenue, including a posteriori and interactive methods, seek to 

solve the multi-objective optimization by a development of a set of Pareto efficient solutions to 

the problem. Depending on the method employed, the entire Pareto efficient set or a 

representative subset thereof is expected to be produced (26). Posteriori methods generally take 

on the form of mathematical programming-based methods or evolutionary algorithms. The 

former categorization repeatedly runs an algorithm with each run producing a single Pareto 

optimal solution (24). Its counterpart categorization is able to determine a set of Pareto efficient 

solutions with one algorithmic run (45).  

The Normal Boundary Intersection method, its successor the Modified Normal Boundary 

Intersection method, and the Normalized Normal Constraint method are commonly applied 

examples of mathematical programming-based a posteriori methods (5, 25, 32). Through 

successive runs, the algorithms aim to give an evenly distributed approximation of the problem’s 

Pareto front. Evolutionary algorithms are generally inspired by behaviors in nature and may 

incorporate a variety of comparative mechanisms mimicking natural selection to determine sets 

of Pareto efficient points (4). Prominent examples of genetic algorithms applied to solve multi-

objective problems include the Vector-Evaluated Genetic Algorithm, the Non-Dominated 

Sorting Genetic Algorithm, the Strength Pareto Evolutionary Algorithm, and their inspired 

successors (33, 34, 44). Other biologically inspired algorithms including Particle Swarm 

Optimization and Artificial Immune System methods have also been utilized (6, 7, 20). 

Interactive approaches have also been developed to utilize expert knowledge during the 

optimization procedure. These processes integrate elicited decision maker input to determine 
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objective function value preference and provide updated solutions in an iterative process (27). 

Models of this broader avenue are beneficial in that they provide decision makers with a more 

complete view of well-performing alternatives and a sense of the model’s feasible solution-

space. However, these models are often computationally intensive and can provide decision 

makers with a large set of Pareto efficient solutions from which a single alternative may still 

need to be selected. 
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Chapter 2 Route Selection Model and Solution Approach 

This chapter models the multi-criteria route selection problem and explains the solution 

approach. 

2.4 Multi-criteria Route Selection Model 

Given a required hazmat shipment, there may be many alternative routes that can be used 

to complete the shipment. Suppose that there are 𝑛𝑛 alternative routes that can be used and let 

these routes be indexed by 𝑖𝑖 = 1,2, … ,𝑛𝑛. That is, it is assumed that the decision maker knows all 

possible routes, which satisfy the operational requirements on the network as well as the 

shipment requirements. In making a selection, the decision maker needs to consider cost and 

time objectives as well as many safety and risk factors as listed in Chapter 1. In particular, 

suppose that there are 𝑚𝑚 criteria that should be taken into account while selecting a route and let 

these criteria be indexed by 𝑗𝑗 = 1,2, … ,𝑚𝑚. Here, it is assumed that the decision maker can 

evaluate any route with respect to each criterion. In particular let 𝑟𝑟𝑖𝑖𝑖𝑖 be route 𝑖𝑖’s value 

considering criterion 𝑗𝑗 and decision maker knows 𝑟𝑟𝑖𝑖𝑖𝑖 for all routes 𝑖𝑖 = 1,2, … ,𝑛𝑛 and for all 

criteria 𝑗𝑗 = 1,2, … ,𝑚𝑚. Without loss of generality, it is assumed that the lower the route 𝑖𝑖’s value 

for a specific criterion, the better the route is based on that criterion.  

Given one criterion, selecting a route for the shipment is an easy task. In particular, 

suppose that the decision maker wants to find the route that is best with respect to criterion 𝑗𝑗. 

Then, the best route for criterion 𝑗𝑗, denoted by 𝑖𝑖(𝑗𝑗), is as defined in equation 2.1: 

 

𝑖𝑖(𝑗𝑗) = 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑖𝑖𝑛𝑛{𝑟𝑟𝑖𝑖𝑖𝑖: 𝑖𝑖 = 1,2, … ,𝑛𝑛}.    (2.1) 
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However, there are 𝑚𝑚 criteria and different routes can be the best for different criteria. Therefore, 

which route to select is challenging. Particularly, the multi-criteria route selection problem is as 

defined in equation 2.2: 

 

𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑖𝑖𝑛𝑛�𝑟𝑟𝑖𝑖𝑖𝑖: 𝑖𝑖 = 1,2, … ,𝑛𝑛� ∀𝑗𝑗 = 1,2, … ,𝑚𝑚.   (2.2) 

 

Next, the overview of the solution approach is described. 

2.5 Multi-criteria Route Selection Solution Approach 

As reviewed in Chapter 1, there are two common approaches for solving multi-criteria 

decision making problems: Pareto front generation and reduction to single-criterion problem.  

The Pareto front generation approach determines the Pareto efficient solution 

alternatives. A solution is Pareto efficient if there is no other solution alternative which is better 

in terms of all of the criteria of interest. Formally put, route 𝑖𝑖′ is Pareto efficient if ∄𝑖𝑖′′ ≠ 𝑖𝑖′, 𝑖𝑖′′ ∈

{1,2, … ,𝑛𝑛} such that 𝑟𝑟𝑖𝑖′𝑖𝑖 ≥ 𝑟𝑟𝑖𝑖′′𝑖𝑖 ∀𝑗𝑗 ∈ {1,2, … ,𝑛𝑛} with 𝑟𝑟𝑖𝑖′𝑖𝑖 > 𝑟𝑟𝑖𝑖′′𝑖𝑖 for at least one 𝑗𝑗 ∈ {1,2, … ,𝑛𝑛}. 

Given 𝑟𝑟𝑖𝑖𝑖𝑖 values, Pareto efficient solutions can be generated using an iterative procedure. In 

Chapter 3, a method for finding Pareto efficient solutions is presented. The problem with this 

approach is that, when the number of criteria is large, there will be too many Pareto efficient 

solutions. Therefore, the decision maker will still need to make a selection from a large set of 

solution alternatives.  

Reduction to single-criterion approach reduces the multi-criteria model into a single-

criterion model by using specific approaches. In particular, depending on the approach used, for 

each route, say route 𝑖𝑖, a single value, say 𝑃𝑃𝑖𝑖, is defined using the route’s criterion values, i.e., 𝑟𝑟𝑖𝑖𝑖𝑖 

values, to calculate route 𝑖𝑖’s 𝑃𝑃𝑖𝑖 value. Then, the route with the best 𝑃𝑃𝑖𝑖 value is selected as the 
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solution alternative to implement. The problem with this approach is defining 𝑃𝑃𝑖𝑖 value using 𝑟𝑟𝑖𝑖𝑖𝑖 

values. Especially, given that 𝑟𝑟𝑖𝑖𝑖𝑖 values mostly consist of safety and risk factors, a decision 

maker should objectively and equally consider these while assuring that an efficient selection is 

made.  

In this project, these two approaches are combined. Specifically, the method, discussed in 

detail in the next chapter, first generates Pareto efficient routes and then selects one route from 

the set of Pareto efficient routes by reducing the problem into a single-criterion selection model. 

To reduce the problem into a single-criterion selection model, three approaches are considered: 

equal weighting approach, maximum deviation approach, and distance to ideal solution 

approach. These approaches are selected because they are unsupervised approaches, i.e., they do 

not require input from decision maker for comparing different criteria. The reason for focusing 

on unsupervised approaches is to assure that all safety and risk factors are equally and 

objectively considered in making an efficient selection. This avoids a situation where the 

decision maker is liable. For instance, if one safety factor is weighted more than another one, and 

an incident happens because of a less-weighted factor, the decision maker’s input would be a bad 

judgement. Therefore, the three unsupervised approaches, which are explained next, are 

accepted. 

2.5.1 Equal Weighting Approach 

Weighting approaches are commonly used for reducing multi-criteria decision making 

problems into a single-criterion one. Typically, these approaches seek input from the decision 

maker for ranking/comparing different criteria. However, as noted, the approach should be 

unsupervised for treating each criterion equally and objectively. Therefore, under equal-

weighting approach, it is assumed that each criterion is equally weighted. Given there are m 
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criteria, a route’s single value will be the average of its values over all criteria. Let 𝑃𝑃𝑖𝑖1 be the 

route i’s single value based on equal-weighting approach. Then, 𝑃𝑃𝑖𝑖1 is as defined in equation 2.3. 

 

𝑃𝑃𝑖𝑖1 =
�∑ 𝑟𝑟𝑖𝑖𝑖𝑖𝑚𝑚

𝑖𝑖=1 �

𝑚𝑚
.     (2.3)  

 

2.5.2 Maximum Deviation Approach 

Under maximum deviation approach, each route is assigned a single value based on the 

deviations of its criterion values from the best criterion values. Particularly, each route’s value 

under a specific criterion will deviate from the best value for that criterion by at least 0. Recall 

from equation 2.1 that route 𝑖𝑖(𝑗𝑗) is the route alternative which has the best value for criterion 𝑗𝑗. 

Therefore 𝑟𝑟𝑖𝑖(𝑖𝑖)𝑖𝑖 defines best value available for criterion 𝑗𝑗. Note that 𝑟𝑟𝑖𝑖(𝑖𝑖)𝑖𝑖 = min {𝑟𝑟𝑖𝑖𝑖𝑖: 𝑖𝑖 =

1,2, … ,𝑛𝑛} and, for notational simplicity, let 𝑅𝑅𝑖𝑖 = 𝑟𝑟𝑖𝑖(𝑖𝑖)𝑖𝑖 = min {𝑟𝑟𝑖𝑖𝑖𝑖: 𝑖𝑖 = 1,2, … ,𝑛𝑛}. Then, route 𝑖𝑖’s 

deviation from the best criterion 𝑗𝑗 value, denoted by 𝑑𝑑𝑖𝑖𝑖𝑖, reads as 

 

𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑟𝑟𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑖𝑖.      (2.4) 

 

Now, let 𝑃𝑃𝑖𝑖2 be the route 𝑖𝑖’s single value based on maximum deviation approach. Then, 𝑃𝑃𝑖𝑖2 is as 

defined in equation 2.5: 

 

𝑃𝑃𝑖𝑖2 = max {𝑑𝑑𝑖𝑖𝑖𝑖: 𝑗𝑗 = 1,2, … ,𝑚𝑚}.    (2.5) 
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2.5.3 Distance to Ideal Solution Approach 

In this approach, ideal point is taken as the reference point and a route’s distance to the 

ideal point on the criteria space is considered in making a selection. Specifically, ideal point 

defines a point, not a solution alternative, on the criteria space. This point has the best values for 

each specific criteria. That is, ideal point’s criterion 𝑗𝑗 value is 𝑅𝑅𝑖𝑖 (recall that 𝑅𝑅𝑖𝑖 = 𝑟𝑟𝑖𝑖(𝑖𝑖)𝑖𝑖 =

min {𝑟𝑟𝑖𝑖𝑖𝑖: 𝑖𝑖 = 1,2, … ,𝑛𝑛}). In most cases, there will not be a route alternative corresponding to the 

ideal point. To find the distance to ideal point in 𝑚𝑚 dimensions, this project uses the Euclidean 

distance measure. In particular, let 𝑃𝑃𝑖𝑖3 be the route 𝑖𝑖’s single value based on distance to ideal 

solution approach. Then, 𝑃𝑃𝑖𝑖3 is as defined in equation 2.6: 

 

𝑃𝑃𝑖𝑖3 = �∑ �𝑟𝑟𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑖𝑖�
2𝑚𝑚

𝑖𝑖=1 .    (2.6) 

 

In the next chapter, algorithmic descriptions are discussed for solving the multi-criteria 

route selection problem using the methodology defined above with each approach. 
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Chapter 3 Algorithmic Descriptions 

This chapter gives the detailed algorithmic descriptions of the solution approach. As 

noted above, the solution approach consists of two stages: generating Pareto efficient solutions 

and reduction to single-criteria model.  

3.6 Stage 1 - Pareto Efficient Solutions 

Suppose that a set of 𝑛𝑛 routes is given with their respective criterion values, i.e., 𝑟𝑟𝑖𝑖𝑖𝑖 

values are given for all 𝑖𝑖 = 1,2, … ,𝑛𝑛 and 𝑗𝑗 = 1,2, … ,𝑚𝑚. As is defined above, route 𝑖𝑖′ is Pareto 

efficient if ∄𝑖𝑖′′ ≠ 𝑖𝑖′, 𝑖𝑖′′ ∈ {1,2, … ,𝑛𝑛} such that 𝑟𝑟𝑖𝑖′𝑖𝑖 ≥ 𝑟𝑟𝑖𝑖′′𝑖𝑖  ∀𝑗𝑗 ∈ {1,2, … , 𝑛𝑛} with 𝑟𝑟𝑖𝑖′𝑖𝑖 > 𝑟𝑟𝑖𝑖′′𝑖𝑖 for at 

least one 𝑗𝑗 ∈ {1,2, … ,𝑛𝑛}. Let 𝑆𝑆 be the set of routes given and 𝑃𝑃𝑃𝑃(𝑆𝑆) be the set of Pareto efficient 

routes within set 𝑆𝑆. Given 𝑟𝑟𝑖𝑖𝑖𝑖 values, Pareto efficient routes in set 𝑆𝑆 can be generated using the 

iterative procedure defined in table 3.1. 

 

Table 3.1 Iterative procedure to generate Pareto efficient routes 

Step: Process: 
0: Let 𝑆𝑆 be a given set of 𝑛𝑛 routes and 𝑟𝑟𝑖𝑖𝑖𝑖 be the 𝑖𝑖𝑡𝑡ℎ route’s criterion 𝑗𝑗 value.  
1: Set 𝑘𝑘 = 1. 
2: While 𝑘𝑘 ≤ 𝑛𝑛 − 1 
3: Set 𝑤𝑤 = 𝑘𝑘 + 1 
4: While 𝑤𝑤 ≤ 𝑛𝑛 
5: If 𝑟𝑟𝑘𝑘𝑖𝑖 = 𝑟𝑟𝑤𝑤𝑖𝑖 ∀𝑗𝑗 = 1,2, … ,𝑚𝑚, set 𝑤𝑤 =:𝑤𝑤 + 1 
6: Else, if 𝑟𝑟𝑘𝑘𝑖𝑖 ≤ 𝑟𝑟𝑤𝑤𝑖𝑖 ∀𝑗𝑗 = 1,2, … ,𝑚𝑚, set 𝑆𝑆 =: 𝑆𝑆\{𝑤𝑤} 
7: Else, if 𝑟𝑟𝑘𝑘𝑖𝑖 ≥ 𝑟𝑟𝑤𝑤𝑖𝑖 ∀𝑗𝑗 = 1,2, … ,𝑚𝑚, set 𝑆𝑆 =: 𝑆𝑆\{𝑘𝑘}, 𝑤𝑤 = 𝑘𝑘 + 1 
8: Else 𝑤𝑤 = 𝑤𝑤 + 1 
9: End 
10: Set 𝑘𝑘 = 𝑘𝑘 + 1 
11: End 
12: Return 𝑃𝑃𝑃𝑃(𝑆𝑆) = 𝑆𝑆. 
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The iterative procedure generates all of the Pareto efficient routes given alternative 

routes. This procedure is illustrated with figure 3.1. Figure 3.1 (a) illustrates 8 route alternatives 

to be evaluated with 2 criteria and route 𝑖𝑖’s values for the two criteria are given in vector [𝑟𝑟𝑖𝑖1, 𝑟𝑟𝑖𝑖2] 

next to the point representing the route for each route. In figure 3.1 (b), Pareto efficient solutions 

are circled with red. 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

(b) 

Figure 3.1 Illustration of Pareto efficient routes: routes (a), Pareto efficient routes (b) 
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3.7 Stage 2 - Single Value Assignments 

Suppose that a set of 𝑛𝑛 Pareto efficient routes is given with their respective criterion 

values, i.e., 𝑟𝑟𝑖𝑖𝑖𝑖 values are given for all 𝑖𝑖 = 1,2, … ,𝑛𝑛 and 𝑗𝑗 = 1,2, … ,𝑚𝑚. Then, using equations 

2.3, 2.5, and 2.6, one can determine the 𝑃𝑃𝑖𝑖1, 𝑃𝑃𝑖𝑖2, and 𝑃𝑃𝑖𝑖3 values for each Pareto efficient route 𝑖𝑖. 

Then, using each approach, the best route can be selected.  

In particular, let route 𝑖𝑖1 be the best route with respect to equal weighting approach. 

Then, 𝑖𝑖1 is as defined in equation 3.1: 

 

𝑖𝑖1 = 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑖𝑖𝑛𝑛{𝑃𝑃𝑖𝑖1: 𝑖𝑖 = 1,2, … ,𝑛𝑛} = 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑖𝑖𝑛𝑛 �
�∑ 𝑟𝑟𝑖𝑖𝑖𝑖𝑚𝑚

𝑖𝑖=1 �

𝑚𝑚
: 𝑖𝑖 = 1,2, … , �.  (3.1) 

 

Now let route 𝑖𝑖2 be the best route with respect to equal weighting approach. Then, 𝑖𝑖2 is as 

defined in equation 3.2: 

 

𝑖𝑖2 = 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑖𝑖𝑛𝑛{𝑃𝑃𝑖𝑖2: 𝑖𝑖 = 1,2, … ,𝑛𝑛} = 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑖𝑖𝑛𝑛�max {𝑑𝑑𝑖𝑖𝑖𝑖: 𝑗𝑗 = 1,2, … ,𝑚𝑚}: 𝑖𝑖 = 1,2, … , �. (3.2) 

 

Finally, let route 𝑖𝑖3 be the best route with respect to equal weighting approach. Then, 𝑖𝑖3 

is as defined in equation 3.1: 

 

𝑖𝑖3 = 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑖𝑖𝑛𝑛{𝑃𝑃𝑖𝑖3: 𝑖𝑖 = 1,2, … ,𝑛𝑛} = 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑖𝑖𝑛𝑛 ��∑ �𝑟𝑟𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑖𝑖�
2𝑚𝑚

𝑖𝑖=1 : 𝑖𝑖 = 1,2, … ,𝑛𝑛�. (3.3) 

 

Equations 3.1, 3.2, and 3.3 will not necessarily return the same route. That is, it is 

possible that 𝑖𝑖1 ≠ 𝑖𝑖2 ≠ 𝑖𝑖3. This is illustrated with the set of Pareto efficient routes given in figure 
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3.1 (a). Specifically, figure 3.2 (a) show the route numbers for the Pareto efficient routes, where, 

without loss of generality, it is assumed that routes 1 to 5 are Pareto efficient. Furthermore, the 

ideal point is represented with a red point in the figure. Recall that an ideal point is defined such 

that its criterion 𝑗𝑗 value is 𝑅𝑅𝑖𝑖 = 𝑟𝑟𝑖𝑖(𝑖𝑖)𝑖𝑖 = min {𝑟𝑟𝑖𝑖𝑖𝑖: 𝑖𝑖 = 1,2, … ,𝑛𝑛}. In this example, the ideal point is 

therefore [0,0]. Figure 3.2 (b) shows 𝑃𝑃𝑖𝑖1/𝑃𝑃𝑖𝑖2/𝑃𝑃𝑖𝑖3 values next to each Pareto efficient route.   

 

 

 

 

 

 

 

 

 

(a) 
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(b) 

Figure 3.2 Illustration of single value assignments: routes (a), assignments (b) 

 

Table 3.2 gives the data for the routes in figure 3.2 (b). Based on table 3.2 and equations 

3.1, 3.2, and 3.3, we have 𝑖𝑖1 = 2, 𝑖𝑖2 = 3, and 𝑖𝑖3 = 4.  

 

Table 3.2 Single value assignments of Pareto efficient routes 

Route 𝒊𝒊 𝒓𝒓𝒊𝒊𝒊𝒊 𝒓𝒓𝒊𝒊𝒊𝒊 𝑷𝑷𝒊𝒊𝒊𝒊 𝑷𝑷𝒊𝒊𝒊𝒊 𝑷𝑷𝒊𝒊𝟑𝟑 
1 0 1 0.50 1 1 
2 0.12 0.70 0.41 0.70 0.71 
3 0.5 0.50 0.50 0.50 0.71 
4 0.65 0.20 0.43 0.65 0.68 
5 1 0 0.50 1 1 

 
 

The overall procedure to solve the multi-criteria route selection problem is summarized in 

table 3.3. Next chapter discusses the coding efforts for the solution approach and conducts 

numerical analyses. 
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Table 3.3 Overall solution approach for multi-criteria route selection 

Step: Process: 
0: Determine 𝑟𝑟𝑖𝑖𝑖𝑖 values for the given set of routes S 
1: Generate 𝑃𝑃𝑃𝑃(𝑆𝑆) using the iterative procedure in Table 3.1 
2: Calculate 𝑃𝑃𝑖𝑖1, 𝑃𝑃𝑖𝑖2, and 𝑃𝑃𝑖𝑖3 using equations 2.3, 2.5, and 2.6, respectively, for 

each route in 𝑃𝑃𝑃𝑃(𝑆𝑆) 
3: Determine and return 𝑖𝑖1, 𝑖𝑖2, and 𝑖𝑖3 using equations 3.1, 3.2, and 3.3, 

respectively. 
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Chapter 4 Codes and Numerical Results 

This chapter explains the coding efforts for the solution approach discussed above and 

documents the results of extensive numerical investigation. 

4.8 Solution Codes 

The solution approaches are coded in Matlab. The following Matlab function files are 

provided in the data supplements as well as in the Appendix. 

1. ParetoFinder.m – This Matlab function is the code of the iterative procedure that 

determines the Pareto efficient routes given a set of routes and each route’s criterion 

values. That is, it is the code of description given in table 3.1, which is used in step 1 of 

the overall solution approach depicted in table 3.3. Details are explained in Appendix A. 

2. IdealPointFinder.m – This Matlab function finds the ideal point given a set of solutions. 

Its output is used in calculating distance to the ideal point. Details are explained in 

Appendix B. 

3. RouteMetricFinder.m – This Matlab function is the code to calculate 𝑃𝑃𝑖𝑖1, 𝑃𝑃𝑖𝑖2, and 𝑃𝑃𝑖𝑖3 

values given a set of solutions. This code is used in step 2 of the overall solution 

approach depicted in table 3.3. Details are explained in Appendix C. 

4. BestRouteFinder.m – This Matlab function is the code to determine 𝑖𝑖1, 𝑖𝑖2, and 𝑖𝑖3 values 

given a set of routes and each route’s 𝑃𝑃𝑖𝑖1, 𝑃𝑃𝑖𝑖2, and 𝑃𝑃𝑖𝑖3 values. This code is used in step 3 

of the overall solution approach depicted in table 3.3. Details are explained in Appendix 

D. 

The output of ParetoFinder.m is input to RouteMetricFinder.m, and the output of 

RouteMetricFinder.m is input to BestRouteFinder.m. The output of the BestRouteFinder.m is a 



24 

 

set of three routes, each of which is the best for the three single value assignment approach 

discussed.  

4.9 Test Problems 

In total, 25 problem classes are defined for testing the solution approach. Each problem 

class corresponds to a combination of 𝑛𝑛 = {50,100,150,200,250} (number of alternative routes) 

and 𝑚𝑚 = {5,10,15,20,25} (number of criteria). 10 problem instances are randomly generated 

within each problem class. That is, in total, 250 problem instances are evaluated. 

DataGenerator.m (see Appendix E) is the Matlab function used to generate problem instances. 

For each route’s each criterion value is randomly generated from a continuous uniform 

distribution with range 0 to 10, that is, 𝑟𝑟𝑖𝑖𝑖𝑖 values are randomly generated between 0 and 10. 

Finally, the distance to the ideal point is divided by the number of criteria to normalize the 

distance among different number of criteria. 

The problem data (input data) and solution data (output data) for each problem instance 

are included in the excel file, titled Data_and_Solution.xlsx, supplemented. Particularly, tabs 1 to 

250 are the problem data generated such that tabs 1-10 are the problem instances in problem 

class 𝑛𝑛 = 50 and 𝑚𝑚 = 5, tabs 11-20 are the problem instances in problem class 𝑛𝑛 = 100 and 

𝑚𝑚 = 5, and so on. Tabs 251-260 are the tabs including the solutions for problem instances in 1-

10; tabs 261-270 include the solutions for problem instances 11-20 and so on. Table 4.1 gives the 

ranges of the tabs for problem data (input data) and problem solution (output data) for each 

problem class.  

Appendix F explains a problem data tab and Appendix G explains a problem solution tab. 

Tab 501 of Data_and_Solution.xlsx is the tab summarizing the average statistics for each class 
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over the 10 problem instances within the problem class as well as the average statistics over all 

250 problem instances. These results are discussed in detail next. 

 

Table 4.1 Input and output data file details 

Problem Class Input Tabs Output Tabs 
n m start end start end 
50 5 1 10 251 260 
50 10 11 20 261 270 
50 15 21 30 271 280 
50 20 31 40 281 290 
50 25 41 50 291 300 
100 5 51 60 301 310 
100 10 61 70 311 320 
100 15 71 80 321 330 
100 20 81 90 331 340 
100 25 91 100 341 350 
150 5 101 110 351 360 
150 10 111 120 361 370 
150 15 121 130 371 380 
150 20 131 140 381 390 
150 25 141 150 391 400 
200 5 151 160 401 410 
200 10 161 170 411 420 
200 15 171 180 421 430 
200 20 181 190 431 440 
200 25 191 200 441 450 
250 5 201 210 451 460 
250 10 211 220 461 470 
250 15 221 230 471 480 
250 20 231 240 481 490 
250 25 241 250 491 500 

 
 

4.10 Numerical Results 

Here, the results of the numerical analyses are summarized. Specifically, the average 

values over all 10 problem instances within each problem class, and the average values overall 
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250 problem instances are given for the equally weighted, maximum deviation, and distance to 

ideal solution values for the best routes based on equally weighted, maximum deviation, and 

distance to ideal solution values. That is, the averages of 𝑃𝑃𝑖𝑖1
1 , 𝑃𝑃𝑖𝑖1

2 , and 𝑃𝑃𝑖𝑖1
3  values for the best 

route based on the equal weighting value; the averages of 𝑃𝑃𝑖𝑖2
1 , 𝑃𝑃𝑖𝑖2

2 , and 𝑃𝑃𝑖𝑖2
3  values for the best 

route based on the maximum deviation value; and the averages of 𝑃𝑃𝑖𝑖3
1 , 𝑃𝑃𝑖𝑖3

2 , and 𝑃𝑃𝑖𝑖3
3  values for the 

best route based on the ideal solution value are summarized.  

Table 4.2 gives the summary statistics over all 250 problem instances solved. Next, these 

results are explained in detail. 

 

Table 4.2 Overall average statistics 

  Single Value 
  𝑃𝑃𝑖𝑖1 𝑃𝑃𝑖𝑖2 𝑃𝑃𝑖𝑖3 

Route 
𝑖𝑖1 3.60 6.63 3.22 
𝑖𝑖2 4.10 5.67 3.47 
𝑖𝑖3 3.66 6.22 3.15 

 

Based on the definition of single value assignments, one can note that 𝑃𝑃𝑖𝑖1
1 = 𝑚𝑚𝑖𝑖𝑛𝑛�𝑃𝑃𝑖𝑖1

1 ,𝑃𝑃𝑖𝑖2
1 ,𝑃𝑃𝑖𝑖3

1 �, 

𝑃𝑃𝑖𝑖2
2 = 𝑚𝑚𝑖𝑖𝑛𝑛�𝑃𝑃𝑖𝑖1

2 ,𝑃𝑃𝑖𝑖2
2 ,𝑃𝑃𝑖𝑖3

2 �, and 𝑃𝑃𝑖𝑖3
3 = 𝑚𝑚𝑖𝑖𝑛𝑛�𝑃𝑃𝑖𝑖1

3 ,𝑃𝑃𝑖𝑖2
3 ,𝑃𝑃𝑖𝑖3

3 �. These can be observed in table 4.2. 

Therefore, if a specific single value approach is chosen, the best route under that single value 

approach is readily available. However, comparing different approaches is important in terms of 

which approach to use. The following observations are from table 4.2 based on average over all 

250 problem instances solved. 

• Route 𝑖𝑖1 vs. Route 𝑖𝑖2: By definition, route 𝑖𝑖1 is the best for 𝑃𝑃𝑖𝑖1 value with a 𝑃𝑃𝑖𝑖1 value of 

3.60 on average, and thus; based on 𝑃𝑃𝑖𝑖1 value, route 𝑖𝑖1 is better than route 𝑖𝑖2, which has 

𝑃𝑃𝑖𝑖1 value of 4.10 on average. By definition, route 𝑖𝑖2 is the best for 𝑃𝑃𝑖𝑖2 value with a 𝑃𝑃𝑖𝑖2 
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value of 5.67 on average, and thus; based on 𝑃𝑃𝑖𝑖2 value, route 𝑖𝑖2 is better than route 𝑖𝑖1, 

which has a 𝑃𝑃𝑖𝑖2 value of 6.63 on average. On the other hand, if these two routes are 

compared based on 𝑃𝑃𝑖𝑖3 value (for which neither is the best), it can be seen that route 𝑖𝑖1 is 

better, with a 𝑃𝑃𝑖𝑖3 value of 3.22 on average, than route 𝑖𝑖2, which has a 𝑃𝑃𝑖𝑖3 value of 3.47. 

• Route 𝑖𝑖1 vs. Route 𝑖𝑖3: By definition, route 𝑖𝑖1 is the best for 𝑃𝑃𝑖𝑖1 value with a 𝑃𝑃𝑖𝑖1 value of 

3.60 on average, and thus; based on 𝑃𝑃𝑖𝑖1 value, route 𝑖𝑖1 is better than route 𝑖𝑖3, which has 

𝑃𝑃𝑖𝑖1 value of 3.66 on average. By definition, route 𝑖𝑖3 is the best for 𝑃𝑃𝑖𝑖3 value with a 𝑃𝑃𝑖𝑖3 

value of 3.15 on average, and thus; based on 𝑃𝑃𝑖𝑖3 value, route 𝑖𝑖3 is better than route 𝑖𝑖1, 

which has a 𝑃𝑃𝑖𝑖3 value of 3.22 on average. On the other hand, if these two routes are 

compared based on 𝑃𝑃𝑖𝑖2 value (for which neither is the best), it can be seen that route 𝑖𝑖3 is 

better, with a 𝑃𝑃𝑖𝑖3 value of 6.22 on average, than route 𝑖𝑖1, which has a 𝑃𝑃𝑖𝑖3 value of 6.63. 

•  Route 𝑖𝑖2 vs. Route 𝑖𝑖3: By definition, route 𝑖𝑖2 is the best for 𝑃𝑃𝑖𝑖2 value with a 𝑃𝑃𝑖𝑖2 value of 

5.67 on average, and thus; based on 𝑃𝑃𝑖𝑖2 value, route 𝑖𝑖2 is better than route 𝑖𝑖3, which has a 

𝑃𝑃𝑖𝑖2 value of 6.22 on average. By definition, route 𝑖𝑖3 is the best for 𝑃𝑃𝑖𝑖3 value with a 𝑃𝑃𝑖𝑖3 

value of 3.15 on average, and thus; based on 𝑃𝑃𝑖𝑖3 value, route 𝑖𝑖3 is better than route 𝑖𝑖2, 

which has a 𝑃𝑃𝑖𝑖3 value of 3.47 on average. On the other hand, if these two routes are 

compared based on 𝑃𝑃𝑖𝑖1 value (for which neither is the best), it can be seen that route 𝑖𝑖3 is 

better, with a 𝑃𝑃𝑖𝑖1 value of 3.66 on average, than route 𝑖𝑖1, which has a 𝑃𝑃𝑖𝑖1 value of 4.10. 

The above observations, which can be seen in table 4.2, imply the following: 

𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑎𝑎𝑎𝑎𝐴𝐴 𝑃𝑃𝑖𝑖1
1 < 𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑎𝑎𝑎𝑎𝐴𝐴 𝑃𝑃𝑖𝑖3

1 < 𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑎𝑎𝑎𝑎𝐴𝐴 𝑃𝑃𝑖𝑖2
1 , 

𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑎𝑎𝑎𝑎𝐴𝐴 𝑃𝑃𝑖𝑖2
2 < 𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑎𝑎𝑎𝑎𝐴𝐴 𝑃𝑃𝑖𝑖3

2 < 𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑎𝑎𝑎𝑎𝐴𝐴 𝑃𝑃𝑖𝑖1
2 , 

𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑎𝑎𝑎𝑎𝐴𝐴 𝑃𝑃𝑖𝑖3
3 < 𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑎𝑎𝑎𝑎𝐴𝐴 𝑃𝑃𝑖𝑖1

3 < 𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑎𝑎𝑎𝑎𝐴𝐴 𝑃𝑃𝑖𝑖2
3 . 



28 

 

In particular, each route is the best based on one single value assignment approach. This 

follows from the definition of routes 𝑖𝑖1, 𝑖𝑖2, and 𝑖𝑖3. Furthermore, route 𝑖𝑖3 is the second best twice 

based on the two other single value assignment approaches, for which it is not the best. On the 

other hand, Route 𝑖𝑖1 is the second best once based on the two other single value assignment 

approaches, for which it is not the best. Finally, route 𝑖𝑖2 is not the second best at all based on the 

two other single value assignment approaches, for which it is not the best. These are illustrated in 

table 4.3. 

 

Table 4.3 Average robustness 

 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊 𝒊𝒊𝟑𝟑 
Number of times it is the best 1 1 1 

Number of times it is the 2nd best 1 2 0 
Number of times it is the 3rd best 1 0 2 

 

Based on these discussions, it can be suggested that using distance to ideal point 

approach as the single value assignment approach is robust because it performs better based on 

other approaches compared to the performances of the other routes, which are not the best for the 

corresponding approach. In addition, table 4.4 summarizes the percentage of problem instances, 

where different approaches resulted in the same route selection. 

 

Table 4.4 Average equality comparison 

% of problems such that 𝑖𝑖1 = 𝑖𝑖2 25.60% 
% of problems such that 𝑖𝑖1 = 𝑖𝑖3 66% 
% of problems such that 𝑖𝑖2 = 𝑖𝑖3 38.80% 
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Table 4.3 indicates that route i3 overlaps with route i1 more than route i2 does (66 vs. 25.6) and 

route i3 overlaps with route i2 more than route i1 does (38.80 vs. 25.6). These support the 

robustness of distance to ideal point approach illustrated in table 4.2. 

 For each problem class, Appendix H lists the average statistics over 10 problem instances 

solved within that problem class, similar to tables 4.2 and 4.4.  
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Chapter 5 Conclusion 

This project focused on multi-criteria route selection problem for transporting a hazmat 

shipment on rail. Hazmat transportation on rail is a challenging problem considering the many 

safety and risk factors that should be accounted for. Coupling the multi-criteria nature of the 

problem with the existence of many alternative routes, making a route selection for shipping the 

hazmat becomes a cumbersome process. While the literature has focused on developing 

optimization models and their solutions under a few factors, there is a lack on providing a simple 

decision support tool that will recommend only a few routes by objectively considering many of 

the safety and risk factors at the same time. 

This project analyzes three different approaches to reduce the multi-criteria route 

selection problem into a single-criterion route selection problem. Each of these approaches are 

unsupervised, meaning that they do not require input from the decision maker. This assures that 

the decision makers’ biases towards some specific criteria are eliminated. The first approach 

equally weighs all of the criteria and assigns a single value to each route based on this equal 

weighting. The second approach takes a route’s maximum deviation from the best values of each 

criteria as the route’s single value. The third approach measures the distance of a route from the 

ideal point, which represents the best values for each criterion, and assigns the distance as the 

route’s single value.  

The solution approach proposed considers Pareto efficient route alternatives. Then, one 

route is selected based on each single value assignment approach. As a result, the overall 

solution approach returns three alternative routes: best one based on equal weighting, best one 

based on maximum deviation, and best one based on distance to the ideal point. A set of 

numerical studies suggest that distance to ideal point is a robust approach as it outperforms the 
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other routes on the approaches that they are not the best. Furthermore, the best route under this 

approach overlaps more frequently with the best routes under different approaches. 

The project has limitations as well. The comparison of the approaches are based on a set 

of numerical experiments, for which the data is randomly generated. The project team was not 

able to acquire data from a railroad carrier about hazmat shipments, particularly, due to the 

sensitivity of such data. However, the detailed description of the solution approach with the 

given algorithmic descriptions and the codes, can be used easily for any setting.  

Several future research directions include to compare these approaches within a multi-

criteria route optimization setting. It is estimated that similar results will be observed. Another 

research direction would be to combine supervised and unsupervised approaches for multi-

criteria route selection. 
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Appendix A Matlab code for ParetoFinder.m 

%% FINDS THE SET OF PARETO EFFICIENT ALTERNATIVES GIVEN A SET OF ROUTES 
% This Matlab function is the code for the procedure given in Table 3.1. 
  
% INPUT to the function: 
% --> RouteSet: This is the (n+1)x(m+1) matrix where entry (i,j) is route i's 
%               criterion j value, the (m+1)th column is the route numbers, 
%               and the (n+1)th row from 1 to m describes the ideal point 
%               of the problem instance 
% --> x       : This is the dimensions of RouteSet not including the 
%               (m+1)th column or the (n+1)th row; [n x m] 
  
% OUTPUT of the function: 
% ---> RouteSet: This is the set of Pareto efficient solutions given in a 
%                matrix, of which entry (i,j) is Pareto efficient route i's 
%                criterion value j. The (m+1)th column keeps the original 
%                route numbers of the corresponding Pareto efficient route 
%                and the final row from 1 to m describes the ideal point 
%                of the problem instance 
  
function [RouteSet] = ParetoFinder(RouteSet, x) 
try 
    L = 1; 
    M = L + 1; 
    while L <= x(1)-1 
        while M <= x(1) 
            W=RouteSet(L,1:x(2))==RouteSet(M,1:x(2)); 
            WW=RouteSet(L,1:x(2))<=RouteSet(M,1:x(2)); 
            WWW=RouteSet(L,1:x(2))>=RouteSet(M,1:x(2)); 
            if all(W==1) 
                M=M+1; 
            elseif all(WW==1) 
                RouteSet(M,:)=[]; 
            elseif all(WWW==1) 
                RouteSet(L, :)=[]; 
                M=L+1; 
            else 
                M=M+1; 
            end 
        end 
        L=L+1; 
        M=L+1; 
    end 
end 
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Appendix B Matlab code for IdealPointFinder.m 

%% FINDS THE IDEAL POINT GIVEN A SET OF ROUTES 
% This Matlab function is the code for finding ideal point 
  
% INPUT to the function: 
% --> RouteSet: This is the (n)x(m) matrix where entry (i,j) is route i's 
%               criterion j value 
  
% OUTPUT of the function: 
% --> RouteSet: This is the updated (n+1)x(m) matrix where entry (i,j) is 
%               route i's criterion j value and the (n+1)th row describes 
%               the ideal point of the problem instance 
  
function [RouteSet] = IdealPointFinder(RouteSet) 
RouteSet(length(RouteSet)+1,:)=min(RouteSet); 
end 
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Appendix C Matlab code for RouteMetricFinder.m 

%% FINDS THE SINGLE VALUE ASSIGNMENTS FOR EACH GIVEN ROUTE 
% This Matlab function is the code for the equations 2.3, 2.5, and 2.6 
  
% INPUT to the function: 
% --> RouteSet: This is the (n+1)x(m+1) matrix where entry (i,j) is Pareto 
%               efficient route i's criterion j value, the (m+1)th column 
%               is the route numbers, and the (n+1)th row from 1 to m 
%               describes the ideal point of the problem instance 
% --> x       : This is the dimensions of RouteSet not including the 
%               (m+1)th column or (n+1)th row; [n x m] 
% Note: given RouteSet will be output of ParetoFinder.m, that is, the route 
%       alternatives considered are Pareto efficient alternatives 
  
% OUTPUT of the function: 
% ---> RouteSet: This is the updated (n+1)x(m+4) matrix where entry (i,j) is 
%                Pareto efficient route i's criterion value j. 
%                The (m+1)th column keeps the original route numbers of the 
%                corresponding Pareto efficient route. The (m+2)th column 
%                describes the Pi1 value of the route, the (m+3)th column 
%                describes the Pi2 value of the route, the (m+4)th column 
%                describes the Pi3 value of the route. The (n+1)th row 
%                from 1 to m describes the ideal point of the problem 
%                instance. 
  
% Finds the performance metrics of each route 
function [RouteSet] = RouteMetricFinder(RouteSet, x) 
for n=1:x(1) 
    % Equal weighting approach: equation 2.3, i.e., Pi1 value 
    RouteSet(n, x(2)+2)=mean(RouteSet(n,1:x(2))); 
     
    % Max deviation approach: equation 2.5, Pi2 value 
    RouteSet(n, x(2)+3)=max(RouteSet(n,1:x(2))-RouteSet(x(1)+1,1:x(2))); 
     
    % Distance to ideal point approach: equation 2.6, Pi3 value 
    RouteSet(n, x(2)+4)=sqrt(sum((RouteSet(n,1:x(2))-
RouteSet(x(1)+1,1:x(2))).^2)/x(2)); 
     
end 
end 
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Appendix D Matlab code for BestRouteFinder.m 

%% FINDS THE BEST ROUTE FOR EACH SINGLE VALUE ASSIGNMENT 
% This Matlab function is the code for the equations 3.1, 3.2, and 3.3 
  
% INPUT to the function: 
% --> RouteSet: This is the (n+1)x(m+4) matrix where entry (i,j) is 
%               Pareto efficient route i's criterion value j. 
%               The (m+1)th column keeps the original route numbers of the 
%               corresponding Pareto efficient route. the (m+2)th column 
%               describes the Pi1 value of the route, the (m+3)th column 
%               describes the Pi2 value of the route, the (m+4)th column 
%               describes the Pi3 value of the route. The (n+1)th row from 
%               1 to m describes the ideal point of the problem instance 
% --> x       : This is the dimensions of RouteSet not including the 
%               (m+1)th through (m+4)th column or the (n+1)th row; [n x m] 
% Note: given RouteSet will be output of ParetoFinder.m, that is, the route 
%       alternatives considered are Pareto efficient alternatives 
  
% OUTPUT of the function: 
% ---> R: The route number corresponding to the route performing the best 
%         by the equally weighting value minimum (equation 3.1) 
% ---> S: The route number corresponding to the route performing the best 
%         by the maximum deviation value minimum (equation 3.2) 
% ---> T: The route number corresponding to the route performing the best 
%         by the distance to ideal point value minimum (equation 3.3) 
% ---> RouteSet: This is updated the (n+1)x(m+4) matrix where entry (i,j) 
%                is Pareto efficient route i's criterion value j. 
%                The (m+1)th column keeps the original route numbers of the 
%                corresponding Pareto efficient route. The (m+2)th column 
%                describes the Pi1 value of the route, The (m+3)th column 
%                describes the Pi2 value of the route, The (m+4)th column 
%                describes the Pi3 value of the route. The (n+1)th row from 
%                1 to m describes the ideal point of the ideal point of the 
%                problem instance. The (n+1)th row from (m+2) to (m+4) now 
%                describes the single value assignment value of the best 
%                performing route by equation 3.1, equation 3.2, and 
%                equation 3.3, respectively. These values are, 
%                respectively, N, O, and P. 
  
function [R, S, T, RouteSet] = BestRouteFinder(RouteSet, x) 
  
% Finds best performing route of each single value assignment 
% Equally weighting value minimum: equation 3.1 
[N, R]=min(RouteSet(1:x(1),x(2)+2)); 
RouteSet(x(1)+1,x(2)+2)=N; 
  
% Maximum deviation value minimum: equation 3.2 
[O, S]=min(RouteSet(1:x(1),x(2)+3)); 
RouteSet(x(1)+1,x(2)+3)=O; 
  
% Distance to ideal point value minimum: equation 3.3 
[P, T]=min(RouteSet(1:x(1),x(2)+4)); 
RouteSet(x(1)+1,x(2)+4)=P; 
end  
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Appendix E Matlab code for DataGenerator.m 

%% THIS CODE GENERATES RANDOM PROBLEM INSTANCES FOR THE GIVEN PROBLEM CLASS 
%  AND THE DESIRED NUMBER OF INSTANCES FROM EACH CLASS 
  
% INPUT to the function: 
% --> ObjFun: A comma-separated list of the criteria (objective function) 
%             number variations to include; an ObjFun input of "5, 10, 15" 
%             dictates that problem classes of 5, 10, and 15 criteria 
%             values will be created 
% --> Rts   : A comma-separated list of the route number variations to 
%             include; an Rts input of "50, 100, 150" dictates that problem 
%             classes of 50, 100, and 150 routes will be created 
% --> Iter  : The number of instances of each problem class to generate 
  
% OUTPUT of the function: 
% ---> MasterMatrix: A three-dimensional matrix containing the randomly 
%                    generated criterion values for each dictated problem 
%                    instance 
% ---> i           : The number of criteria variations included in ObjFun; 
%                    an ObjFun input of "5, 10, 15" yields an i value of 3 
% ---> j           : The number of route variation included in Rts; an Rts 
%                    input of "50, 100, 150" yields a j value of 3 
% ---> k           : The number of instances of each problem class 
%                    generated; k = Iter upon generation of all problem 
%                    class instances 
  
% Note: Dimensions in accordance with the input parameters 
function [MasterMatrix, i, j, k] = DataGenerator(ObjFun, Rts, Iter) 
m=1; 
for i=1:length(ObjFun) 
    for j=1:length(Rts) 
        k=1; 
        for k=1:(Iter) 
            RandMatrix=1+(10-1)*rand(Rts(j), ObjFun(i)); 
            MasterMatrix{m}=RandMatrix; 
            m=m+1; 
        end 
    end 
end 
end 
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Appendix F Problem data tab explanation 

Figure F.1 shows a problem data from problem class 𝑛𝑛 = 50, 𝑚𝑚 = 5. The first row gives 

the column titles. Columns 1 to 𝑚𝑚 are the criteria values for the corresponding route defined in 

the selected row. Column 𝑚𝑚 + 1 gives the 𝑃𝑃𝑖𝑖1 value, column 𝑚𝑚 + 2 gives the 𝑃𝑃𝑖𝑖2 value, and 

column 𝑚𝑚 + 3 gives the 𝑃𝑃𝑖𝑖3 value. The last row is the ideal point solution with route number 0. 

Note that a problem data tab will have 𝑛𝑛 + 2 rows and 𝑚𝑚 + 4 columns. 

 

Figure F.1 Problem data tab representation 
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Appendix G Problem solution tab explanation 

Figure G.1 shows the first part of the solution data from problem class 𝑛𝑛 = 50, 𝑚𝑚 = 5. 

The first row gives the column titles. Columns 1 to 𝑚𝑚 are the criteria values for the 

corresponding Pareto efficient route defined in the selected row. Column 𝑚𝑚 + 1 gives the 𝑃𝑃𝑖𝑖1 

value, column 𝑚𝑚 + 2 gives the 𝑃𝑃𝑖𝑖2 value, and column 𝑚𝑚 + 3 gives the 𝑃𝑃𝑖𝑖3 value. Note that these 

are the data for only Pareto efficient routes, not every route. 

 

 

Figure G.1 Problem data tab representation – part 1 

 

Figure G.2 shows the second part of the solution data from problem class 𝑛𝑛 = 50, 𝑚𝑚 = 5. 

Column L gives the description of the given data in the rows. In Column M, the route numbers 

for the best routes are given. That is, these are 𝑖𝑖1, 𝑖𝑖2, and 𝑖𝑖3 values. Column N gives the 

identifier 1 if the corresponding route is Pareto efficient and 0 otherwise. Column O gives 𝑃𝑃𝑖𝑖1
1 , 

𝑃𝑃𝑖𝑖2
1 , and 𝑃𝑃𝑖𝑖3

1  values; Column P gives 𝑃𝑃𝑖𝑖1
2 , 𝑃𝑃𝑖𝑖2

2 , and 𝑃𝑃𝑖𝑖3
2  values; and Column Q gives 𝑃𝑃𝑖𝑖1

3 , 𝑃𝑃𝑖𝑖2
3 , and 

𝑃𝑃𝑖𝑖3
3  values. In the first 4 rows. Bottom rows gives an identifier in Column P whether 𝑖𝑖1 = 𝑖𝑖2, 

𝑖𝑖1 = 𝑖𝑖3, and 𝑖𝑖2 = 𝑖𝑖3. Finally, the last part gives the number of Pareto efficient solutions 

considered. Note that these column letters will change depending on the length of the first part. 
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Figure G.2 Problem data tab representation – part 2 
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Appendix H Average statistics for each problem class 

Figures H.1 to H.25 show the summary statistics for each problem class with the 

specified n and m values. The values are the averages over 10 problem instances solved within 

each problem class. Objective functions number is the number of criteria m, and routes number 

is the number of routes n. 

 

 

Figure H.1 Average statistics for problem class n=50, m=5 

 

 

Figure H.2 Average statistics for problem class n=100, m=5 

 

Objective Functions: 5, Routes: 50
Route Metric Pareto Efficiency Weighted Average Minimax Distance to Ideal
Equally Weighted Average 100% 2.98 4.43 2.38
Minimax 100% 3.22 3.65 2.40
Distance to Ideal 100% 3.10 3.93 2.32

Equally Weighted = Minimax 50%
Equally Weighted = Minimum Distance 70%
Minimax = Minimum Distance 70%

Objective Functions: 5, Routes: 100
Route Metric Pareto Efficiency Weighted Average Minimax Distance to Ideal
Equally Weighted Average 100% 2.966204868 4.549193633 2.474924118
Minimax 100% 3.432625586 3.593185491 2.617091734
Distance to Ideal 100% 3.05122932 3.87223184 2.31202612

Equally Weighted = Minimax 20%
Equally Weighted = Minimum Distance 50%
Minimax = Minimum Distance 40%
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Figure H.3 Average statistics for problem class n=150, m=5 

 

 

Figure H.4 Average statistics for problem class n=200, m=5 

 

 

Figure H.5 Average statistics for problem class n=250, m=5 

 

Objective Functions: 5, Routes: 150
Route Metric Pareto Efficiency Weighted Average Minimax Distance to Ideal
Equally Weighted Average 100% 2.657330057 4.326727132 2.207655095
Minimax 100% 2.97542169 3.198706221 2.156307918
Distance to Ideal 100% 2.74555418 3.24547208 2.01406511

Equally Weighted = Minimax 40%
Equally Weighted = Minimum Distance 50%
Minimax = Minimum Distance 80%

Objective Functions: 5, Routes: 200
Route Metric Pareto Efficiency Weighted Average Minimax Distance to Ideal
Equally Weighted Average 100% 2.373267009 2.829687528 1.611601474
Minimax 100% 2.488032102 2.450006364 1.655986031
Distance to Ideal 100% 2.396193461 2.631590657 1.580411104

Equally Weighted = Minimax 50%
Equally Weighted = Minimum Distance 80%
Minimax = Minimum Distance 60%

Objective Functions: 5, Routes: 250
Route Metric Pareto Efficiency Weighted Average Minimax Distance to Ideal
Equally Weighted Average 100% 2.372323223 2.72914327 1.616027354
Minimax 100% 2.480556535 2.398462752 1.631133772
Distance to Ideal 100% 2.387962156 2.50249071 1.574482049

Equally Weighted = Minimax 60%
Equally Weighted = Minimum Distance 80%
Minimax = Minimum Distance 60%
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Figure H.6 Average statistics for problem class n=50, m=10 

 

 

Figure H.7 Average statistics for problem class n=100, m=10 

 

 

Figure H.8 Average statistics for problem class n=150, m=10 

 

Objective Functions: 10, Routes: 50
Route Metric Pareto Efficiency Weighted Average Minimax Distance to Ideal
Equally Weighted Average 100% 3.681403539 6.391969841 3.260138428
Minimax 100% 4.163737953 5.755801765 3.467075721
Distance to Ideal 100% 3.75428916 6.106274094 3.19667533

Equally Weighted = Minimax 50%
Equally Weighted = Minimum Distance 70%
Minimax = Minimum Distance 60%

Objective Functions: 10, Routes: 100
Route Metric Pareto Efficiency Weighted Average Minimax Distance to Ideal
Equally Weighted Average 100% 3.41651606 6.836629486 3.134068315
Minimax 100% 4.189700092 5.571424807 3.49598656
Distance to Ideal 100% 3.471740118 6.415640634 3.094466401

Equally Weighted = Minimax 20%
Equally Weighted = Minimum Distance 80%
Minimax = Minimum Distance 20%

Objective Functions: 10, Routes: 150
Route Metric Pareto Efficiency Weighted Average Minimax Distance to Ideal
Equally Weighted Average 100% 3.369273566 5.702515265 2.972849601
Minimax 100% 3.536195655 4.988075423 2.924575319
Distance to Ideal 100% 3.495765173 5.032980872 2.893977561

Equally Weighted = Minimax 60%
Equally Weighted = Minimum Distance 60%
Minimax = Minimum Distance 90%
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Figure H.9 Average statistics for problem class n=200, m=10 

 

 

Figure H.10 Average statistics for problem class n=250, m=10 

 

 

Figure H.11 Average statistics for problem class n=50, m=15 

 

Objective Functions: 10, Routes: 200
Route Metric Pareto Efficiency Weighted Average Minimax Distance to Ideal
Equally Weighted Average 100% 3.140189342 5.658605964 2.705494286
Minimax 100% 3.501894769 4.357194321 2.750432588
Distance to Ideal 100% 3.269199118 4.553444166 2.625274391

Equally Weighted = Minimax 50%
Equally Weighted = Minimum Distance 60%
Minimax = Minimum Distance 70%

Objective Functions: 10, Routes: 250
Route Metric Pareto Efficiency Weighted Average Minimax Distance to Ideal
Equally Weighted Average 100% 3.254631527 5.718906676 2.865547797
Minimax 100% 3.572425149 4.54582879 2.86624283
Distance to Ideal 100% 3.367586255 4.849141699 2.73527036

Equally Weighted = Minimax 30%
Equally Weighted = Minimum Distance 50%
Minimax = Minimum Distance 70%

Objective Functions: 15, Routes: 50
Route Metric Pareto Efficiency Weighted Average Minimax Distance to Ideal
Equally Weighted Average 100% 3.741355539 7.219381117 3.356255741
Minimax 100% 4.341165543 6.354645766 3.793152055
Distance to Ideal 100% 3.762520146 7.278058804 3.34109645

Equally Weighted = Minimax 30%
Equally Weighted = Minimum Distance 80%
Minimax = Minimum Distance 20%
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Figure H.12 Average statistics for problem class n=100, m=15 

 

 

Figure H.13 Average statistics for problem class n=150, m=15 

 

 

Figure H.14 Average statistics for problem class n=200, m=15 

 

Objective Functions: 15, Routes: 100
Route Metric Pareto Efficiency Weighted Average Minimax Distance to Ideal
Equally Weighted Average 100% 3.839208481 7.541612714 3.650815381
Minimax 100% 4.551964962 6.269943767 3.964385474
Distance to Ideal 100% 3.93421375 7.070606063 3.526564855

Equally Weighted = Minimax 0%
Equally Weighted = Minimum Distance 50%
Minimax = Minimum Distance 30%

Objective Functions: 15, Routes: 150
Route Metric Pareto Efficiency Weighted Average Minimax Distance to Ideal
Equally Weighted Average 100% 3.82684722 7.472007403 3.541700903
Minimax 100% 4.577536219 6.202393787 4.005396603
Distance to Ideal 100% 3.927529079 7.039009694 3.456607656

Equally Weighted = Minimax 20%
Equally Weighted = Minimum Distance 40%
Minimax = Minimum Distance 20%

Objective Functions: 15, Routes: 200
Route Metric Pareto Efficiency Weighted Average Minimax Distance to Ideal
Equally Weighted Average 100% 3.795066125 7.443009073 3.527219307
Minimax 100% 4.215406779 6.184030966 3.713656912
Distance to Ideal 100% 3.840502935 6.689070404 3.416151281

Equally Weighted = Minimax 30%
Equally Weighted = Minimum Distance 70%
Minimax = Minimum Distance 60%
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Figure H.15 Average statistics for problem class n=250, m=15 

 

 

Figure H.16 Average statistics for problem class n=50, m=20 

 

 

Figure H.17 Average statistics for problem class n=100, m=20 

 

Objective Functions: 15, Routes: 250
Route Metric Pareto Efficiency Weighted Average Minimax Distance to Ideal
Equally Weighted Average 100% 3.656746801 6.897943801 3.322439726
Minimax 100% 4.058634801 6.033879852 3.512580604
Distance to Ideal 100% 3.681384536 6.625993896 3.289347915

Equally Weighted = Minimax 20%
Equally Weighted = Minimum Distance 80%
Minimax = Minimum Distance 40%

Objective Functions: 20, Routes: 50
Route Metric Pareto Efficiency Weighted Average Minimax Distance to Ideal
Equally Weighted Average 100% 4.111253323 7.548340858 3.696649338
Minimax 100% 4.524001087 6.9294155 4.006884676
Distance to Ideal 100% 4.111889982 7.454253806 3.687946216

Equally Weighted = Minimax 30%
Equally Weighted = Minimum Distance 90%
Minimax = Minimum Distance 30%

Objective Functions: 20, Routes: 100
Route Metric Pareto Efficiency Weighted Average Minimax Distance to Ideal
Equally Weighted Average 100% 4.166515871 8.253309824 3.916069913
Minimax 100% 4.868429169 7.036196448 4.342584221
Distance to Ideal 100% 4.223514244 7.856015519 3.802693744

Equally Weighted = Minimax 10%
Equally Weighted = Minimum Distance 40%
Minimax = Minimum Distance 10%
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Figure H.18 Average statistics for problem class n=150, m=20 

 

 

Figure H.19 Average statistics for problem class n=200, m=20 

 

 

Figure H.20 Average statistics for problem class n=250, m=20 

 

Objective Functions: 20, Routes: 150
Route Metric Pareto Efficiency Weighted Average Minimax Distance to Ideal
Equally Weighted Average 100% 3.900855122 7.502127259 3.574180021
Minimax 100% 4.614878214 6.877325218 4.025204154
Distance to Ideal 100% 3.900855122 7.502127259 3.574180021

Equally Weighted = Minimax 20%
Equally Weighted = Minimum Distance 100%
Minimax = Minimum Distance 20%

Objective Functions: 20, Routes: 200
Route Metric Pareto Efficiency Weighted Average Minimax Distance to Ideal
Equally Weighted Average 100% 4.030778587 7.951561465 3.763448494
Minimax 100% 4.471435273 6.604639962 3.964398519
Distance to Ideal 100% 4.058272813 7.713279551 3.720596466

Equally Weighted = Minimax 10%
Equally Weighted = Minimum Distance 80%
Minimax = Minimum Distance 20%

Objective Functions: 20, Routes: 250
Route Metric Pareto Efficiency Weighted Average Minimax Distance to Ideal
Equally Weighted Average 100% 3.832204625 8.090744115 3.581550919
Minimax 100% 4.705808757 6.600305631 4.154496029
Distance to Ideal 100% 3.85200314 7.648073056 3.50923381

Equally Weighted = Minimax 0%
Equally Weighted = Minimum Distance 70%
Minimax = Minimum Distance 10%



52 

 

 

Figure H.21 Average statistics for problem class n=50, m=25 

 

 

Figure H.22 Average statistics for problem class n=100, m=25 

 

 

Figure H.23 Average statistics for problem class n=150, m=25 

 

Objective Functions: 25, Routes: 50
Route Metric Pareto Efficiency Weighted Average Minimax Distance to Ideal
Equally Weighted Average 100% 4.344949716 8.169346811 3.951095744
Minimax 100% 4.826659655 7.406175633 4.243262979
Distance to Ideal 100% 4.409367663 7.955089763 3.887035764

Equally Weighted = Minimax 10%
Equally Weighted = Minimum Distance 60%
Minimax = Minimum Distance 20%

Objective Functions: 25, Routes: 100
Route Metric Pareto Efficiency Weighted Average Minimax Distance to Ideal
Equally Weighted Average 100% 4.234836473 8.254467147 3.893044223
Minimax 100% 4.941636744 7.343034687 4.399054216
Distance to Ideal 100% 4.25986127 8.029127771 3.871825211

Equally Weighted = Minimax 10%
Equally Weighted = Minimum Distance 80%
Minimax = Minimum Distance 30%

Objective Functions: 25, Routes: 150
Route Metric Pareto Efficiency Weighted Average Minimax Distance to Ideal
Equally Weighted Average 100% 4.126872452 7.771269218 3.825948822
Minimax 100% 4.792228053 7.102485403 4.276679367
Distance to Ideal 100% 4.175742188 7.680318797 3.808972469

Equally Weighted = Minimax 20%
Equally Weighted = Minimum Distance 70%
Minimax = Minimum Distance 20%
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Figure H.24 Average statistics for problem class n=200, m=25 

 

 

Figure H.25 Average statistics for problem class n=250, m=25 

 

 

 

Objective Functions: 25, Routes: 200
Route Metric Pareto Efficiency Weighted Average Minimax Distance to Ideal
Equally Weighted Average 100% 4.032629741 8.163277894 3.892853766
Minimax 100% 4.651541492 7.208203057 4.22877131
Distance to Ideal 100% 4.101566193 8.013200156 3.809576892

Equally Weighted = Minimax 0%
Equally Weighted = Minimum Distance 50%
Minimax = Minimum Distance 10%

Objective Functions: 25, Routes: 250
Route Metric Pareto Efficiency Weighted Average Minimax Distance to Ideal
Equally Weighted Average 100% 4.104233887 8.368516773 3.875785517
Minimax 100% 4.795460239 7.082344259 4.249543428
Distance to Ideal 100% 4.194153829 7.886407988 3.775432899

Equally Weighted = Minimax 0%
Equally Weighted = Minimum Distance 40%
Minimax = Minimum Distance 10%
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